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A multigrid algorithm is developed for the numerical solution of elliptic free boundary 
problems. The domain of the problem is mapped onto a rectangle and the governing 
equations discretized using finite differences. The resulting algebraic system is solved 
iteratively using a multigrid V cycle. For a convergent relaxation procedure it is necessary to 
use line iteration perpendicular to the free boundary simultaneously altering the values of the 
dependent variable and the position of the boundary, which is conveniently done using a 
single Newton iteration. Three problems are considered, a Poisson type problem, a steady 
state heat transfer problem, and one from electrochemical machining. The first two problems 
rapidly converge in a few multigrid cycles, the third converges less rapidly though adequately. 
Since full multigrid (FMG) is used, the results on the three finest grids could be combined to 
give accurate results of sixth order. ‘cl 1986 Academic Press, Inc. 

1. INTRODUCTION 

Free boundary problems, in which the position of one or more boundaries is 
unknown, arise in a variety of problems. For example, in Ockendon and Hogkins 
[l] there are presented applications from the steel and glass industries, chemistry, 
biology, and astrophysics, which involve heat flow and diffusion with phase 
changes, or involve chemical reaction and absorption. At the free boundary there 
are two boundary conditions rather than one and hence the boundary data is over- 
prescribed. It is this extra boundary condition which provides the necessary 
additional information not only to solve the equations but also to locate the 
position of the unknown boundary. New independent variables transform the 
equations such that the domain of the problem is transformed into a rectangle. 
Since the boundary is unknown this transformation is unknown and has to be 
solved simultaneously with the problem. The equations are discretized in the usual 
way and, since we restrict ourselves to elliptic problems, the resulting algebraic 
system needs to be solved iteratively. 

In recent years there have been proposed many new fast solver algorithms such 
as fast Fourier transformation, incomplete lower-upper decomposition, for exam- 
ple; but one of the most competitive in terms of efficiency has been the multigrid 
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technique. The multigrid algorithm has successfully been apphe 
problems using finite differences or finite elements with fixed boundaries of 
arbitrary geometry, singular perturbation problems, and integral equations 12, 31. 
In this paper we demonstrate that the application of multigrid techniques to free 
boundary problems results in a similarly effkient procedure. Finding a convergent 
relaxation procedure was the only real difficulty encountered. It was found 
necessary to relax the position of the free boundary simultaneously with the depen- 
dent variable. The best way of accomplishing this is FO use line interation which 
includes a single nodal value of the boundary position. The algorithm is illustrated 
by the solution of three problems namely a Poisson type problemr a steady state 
heat transfer problem, and one from electrochemical machining. 

The technique incorporates the full multigrid algorithm (FMG) which can 5e 
easily adapted to produce results at every grid level. By applying Richardsor 
extrapolation to the results from the three finest grids it is possible to prodtice 
results with sixth-order accuracy. 

2. NUMERICAL PROCEDURE 

The problem which we consider is illustrated in Fig. Ii. The boundary OAK con- 
sists of fixed elements Oil, OC. and AB given by .p’ = 0, x = 0, and x = L respectively 
and a free element CB given by 4’ = g(.u), where g is unknown and is determined by 
the problem. The governing equations of the problem are typically of the form 

L11=f, 0 < J’ < g(s), 0 < x < L 

Fu = d7 1% = 0, 0 d .Y < L 

s = 0,O < I’ < gj0 j 

s=L.o<JxgjL) 

F,u=d, 1 

F,u=dz I 
1’ = g(s), 0 < x d L 
. 

(ii 

where L, F. F,, and Fz are linear operators and j; d, d, , and d2 arc known functions 
of s and J. The equations are assumed sufficient for the solutions of unknowns 
U(S, 1:) and g(x). 

The region OABC is transformed onto a rectangle using the equations 
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FIG. 1. (i) The typical general problem, (ii) the Poisson type problem, (iii) the flow past a 
refrigerated pipe, and (iv) the electrolytic cell used for machining the anode. 

to give equations of the form 

L’u= f’ O<ij<l,O<<<L 

Fu=d v]=O,O<(<L 

(=O,O<Y/<l 

;‘=L,O<qtl 

F; u = d, 
1 yI=l,O<{<L. 

F;u=ll; ) 

(3) 

where the primed quantities not only depend on t and q but also on g and its 
derivatives. 

A mesh of dimension IZ x m is placed on the rectangle given by 

ti = ill, i=O, 1 ,..., n, h = L/n 

yI/ = jk 
(4) 

j = 0, l,..., m, k = l/m. 

If we let U, and Gi be approximations for u( ih, jk) and g(h) respectively then 
Eqs. (3 ) are replaced by the numerical equations 

LhqJ, = f”. i = 1, 2,..., n- 1; j= 1, 2,..., in- 1 (5a) 
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j = 0, i = 0, I,..., ri 

i = 0, j = 1, 2 ,..., m - 1 $S$b 

i = n, j = 1, 2,..., ?% - 1 

Fhku. = dh / 1 1.q 1 
fY& = d’;,, \ 

j = m, i = 0, 1 ,..., n. 

where L’Ik, Fiik, FJzk and FGk are numerical operators and f”. 8, df , and L$ can 
depend on h via the numerical differencing of the derivatives of g. 

Equations (5) can be solved using the usual multigrid techniques, the only dif- 
ficulty is in obtaining a suitable relaxation procedure. The obvious procedure might 
involve the relaxation of U, using Eqs. (5a), (5b) and the first equation in (jc). A 
second sweep would then be used to relax Gi using the second equation in (5~). 
This procedure is, however, unreliable since changes in G, introduced by the second 
sweep introduce high frequency errors to the residuals relaxed in the first sweep. 
Brandt and Dinar [4] introduced the notion of distributive relaxation to overcome 
this type of problem. This would involve changes in U,, and Gi during the second 
sweep constructed in such a way that the residuals relaxed in the first sweep remain 
tinchanged. An effect similar to that achieved by the distribution of residuals is 
readily obtained using line relaxation. For given i the unknown Gi appears in the 
coefhcients of the difference equations (5 j only at nodes on the lines < = jlz, j = I - B1 
i, i; I. This suggests that the difference equations on 5 = ii1 should be relaxed 
simultaneously and hence )I-line relaxation is natural for the problem. Accordingly 
we solve the complete set of non-linear equations for 

{ u,, j = 0, l,... ~ n; G, ; (51 

at location i using Newton iteration. It is found in practice that one Newtori 
iteration is sufficient during each sweep. 

The multigrid procedure is then more or less standard. The coarse grid structure 
can use standard coarsening in which the grids have cell sizes t; x k: 2h x Zk, 
41~ x 4k,..., etc., or, since q-line relaxation is used, one can use {-coarsening in which 
the grids have cell sizes 11 x k, 2h x k, 4h x k,..., etc. Restriction from line to coarse 
may use simple injection, half or full weighting, and prolongation from coarse to 
fine uses the usual bilinear interpolation. As we will see the process is rapidly coil- 
vergent using the V cycle, hence W and F cycles are unnecessary. 

3. TEST PROBLEMS 

To examine the algorithm proposed in Section 2 we will consider three probiems, 
first a simple problem with known analytical solution, second, a heat transfer 
problem [5] and finally a problem from electrochemical machining [S]. 
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1. Poisson Type Problem 

This problem is suggested in part by semi-conductor studies and is depicted in 
Fig. lii. The governing equations are 

tf rg +;$=f(r, 0) 
( 1 

u(r, 0) = cr(8) r=l 

u(r, 0) = P(e) 

I 
g (r, e)=y(r, 0) ) 

r = 1 + g(0). 

(7) 

for which (r, 0) are polar coordinates and a/an denotes the normal derivative at the 
boundary. If the solution is given by 

u(r, 8)= (r-2J3 epcosbi 

g(e) = 4 + cos e 

then-A a, /3, and y are given by 

f(r ej=(r--2)emmc”“Q 
7 

r2 
[3r(3r - 2) -k (r - 2)3(sin’ 6, + cos e)] 

a(e)= -emcos*, p(e)=(2+~0~ej~~-C-Q 

y(r, e) = 
(r-212 e-cosQ 

i 
r Jr* + sin” 8 

[3r2 + (P - 2) sin’ e]. 

63) 

(9) 

2. Steady State Heat Transfer 

The second problem describes the final build-up of an ice jacket around a 
refrigerated pipe of radius 1 and temperature - 1 in a channel of width 4 delivering 
water at a constant rate (Fig. liiij. The equations to be solved are 

i a al4 i azzf -- 
r c?r iir r-+-7s=O 

z4(r, t3)= -1 on r=l 

u(r, e) = 0 
! 

$(r,H)=i~~~f~nOg)l j 
r=l+g(e) 

(10) 
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where u is the ice temperature and E, the heat transfer coefficient. The outer boun- 
dary conditions contain a discontinuous derivative at d = 0, x; otherwise the 
problem is similar in type to the first problem. 

Equations (7) and (10) can be transformed into the rectangle 0 < 12” < rr, 0 < u < i 
using the equations 

to give 

Problem 1 

Problem 2 

where the last equation is a result of the problems’ being symmetrical about < = Cl 
and r = x. For Problem 1 f, x, and B are as given by Eq. (9) and for Problem 2 
.f=O, x= -1. and /?=O. 

3. Electmcker?licai Machining 

In the final problem the piece of metal which is to be shaped forms the anode 01 
an electrolytic cell (Fig. liv) which dissolves when a current is passed between 
anode and cathode. The cathode, which is made of metal uncorruptable by the eiec- 
;rolyte, is moved towards the anode at a constant rate such that in a steady state 
the gap, given by g(s), is independent of time. The shape of the cathode, the curve 
.r’ = j(x)? determines the shape of the anode. Thus for given jJx) we wish tcj derer- 
mine g(x) from which the shape of the anode is simply ,f+ g. The governing 

equations are 
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Al 

Is=O 
on .x=Oandx= 1 

u=o on ~=f(x) 

Li = 1 

all 
I 

i 
on y=f(xj Jr g(x) 

Gi=L’ ’ 

;;?\ 
-.F, 

where LI is the electric potential and 7 is a constant related to the recess&n rate. For 
compatibility reasons we assume that 

Equations (13) and (14) can be transformed onto the square 0 d ;Y ,< i, 0 d ri < ! 
using the equations 

to give 

a211 
uJ”+w2f I] G+ [2f’g’-f“‘g+?~(2g”- gg”j]E 

14 = 1 

&b/Y,; = 0, <=Oand 1, Odr~<l. 

4. IMPLEMENTATION 

An n x II mesh is placed on the rectangle 0 < r < L, 0 < i/ < 1. where E -T for 
Problems 1 and 2 and L = 1 for Problem 3, with rz = 2”’ to facilitate the multi&id 
algorithm. A typical mesh point (ti, qj) is given by (ik> j/7), i, j= 0, l,..., n. where 
K= L/n and /I = l/n. In order that we may use central differencing to represen: 
derivative boundary conditions we includethe fictitious mesh points i -1:. jil: !. 
(l+k,jh),j=O, l,.... rz, and (i/c, 1+/z): i= --I, O,..., nil. 
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Equations (12) and (16) can be represented by 

where A, B. C, D, and E can depend on 5, ye, g, g’? and g” but not on LJ. A?1 
derivatives were represented by central differences and hence Eqs. ( 17) are replaced 
by the algebraic system 

Di/ +s (Ui+ ,.j- 2u;,+u,~+,,;)+Eo=0 

.j = 1, 2 )...) fl. i = 0. I:..., il (ia) 

where gi = g(<;) and A,, B,, C,, D,, and E, are A, B, C, D, and E evaluated using 
<!, rljs gi, ( W%jjgi+ 1 - gi- I), and (llh2)(gi+ 1 - 2gi + gj.- 1 ), respectively. 

Equations (18) are solved using q-line relaxation, that is. for a given i tke 
variables ui j, j= 0, I,..., TV + 1, and gi are solved simultaneously using Newton’s 
iteration? i.e., 

where dujfj and dgj’) are found by solving the matrix equation. 
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4 

c2 0 4 

. . 

b n-2 c II ~ 2 li- 

am-1 b,-, 0 d,- 

4 c,, 4, 
an+1 cn+ I d ?I+ 

j = 1, 2,..., II 

(22 1 

1 
a,,+, = - c?l+1=2/1 

d,=di, 
.I agi’ j= 1, 2,..., n + 1; 

uiO and u, have been replaced by C(~ and bi and hence Au$) and Au!;’ do not appear 
in the system (18). Rather than working out the dj analytically which can prove 
very tedious and error prone, it is easier to calculate it numerically using 

where wii represents all other variables contained in 4, other than gi. The value of E 
is chosen to be sufficiently small to ensure reasonably accuracy of (23) without 
incurring any significant round-off error, in practice E was set to 10P6. Solutions of 
Eqs. (21) can be found very efficiently since the system is nearly tridiagonal. 

The multigrid algorithm employed uses rl-zebra line relaxation employing a single 
Newton iterate. Coarsening is in the <-direction only, i.e., the coarse grids have 
mesh size 2’x 2”, i = 1, 2 ,..., m with m usually set at 6 giving a 64 x 64 fine mesh. 
This coarsening permits us to use centered differencing along the v] = 1 boundary at 
all levels. Restriction uses full weighting and prolongation bilinear interpolation. I’ 
cycles were used throughout with convergence after 6-12 iterations depending on 
the problem. The full multigrid algorithm was employed starting from a 4 x 4 grid, 



MULTIGRIDING FREE BOUNDARY PROBLEMS 4: 

the initial state of the next finest grid being effected from the current grid using 
bilinear interpolation. 

Problems 2 and 3 only converged if i 3 1 or v < 2. For other values of i. and :’ it 
was necessary to use continuation which was accomplished in the following man- 
ner. For Problem 2 solutions were sought for, ii = lo”, where d= 1, i,..., -2. The 
solution for A= 10 is convergent and is obtained as described above. The case 
A= lo”- “* can be obtained from the result for i = 10” by dividing the current value 
of 1. by IO-“” and applying a single I’ cycle. This was applied 6 times bringing the 
value of JI to IO”- ’ ‘. The k’ cycle was then applied a further 6 to 12 times to obtain 
convergence. For Problem 3 solutions were sought for Y = 2”, d = 0, i,.... 3 and a 
similar continuation process employed starting from Y= 1. 

5. RESULTS 

In each case the I;’ cycle of the multigrid iteration performed a single relaxation 
sweep between fine to coarse and coarse to fine transfers (i.e., r, = \12 = !; in the 
usual notationj. The error was monitored by calculating the root mean square 
change in u,, resulting from the last relaxation sweep of the 6: cycle which occurs ~.“r 
the finest level. Let RMS(rj denote the error after Y multigrid iteration cycles then 
we define the rate of convergence p by 

RMS( N) 
‘=RMS(N- 1) 

where N is the number of cycles performed. The value of N lies in the range 
6 < N 6 12 and is chosen such that RMS(Nj is of the order 10 --‘. A value of p equal 
to 0. I indicates that each I’ cycle gives an extra decimal place accuracy in the com- 
puted results 

PROBLEMS 1. Results were obtained for mesh sizes 4 x 4, 8 x g,..., 64 x 64, and the 
values of p obtained are shown in Table I. They are typically of the order of 0.1 and 
hence the muitigrid algorithm gives satisfactory rapid convergence for the solution 

TABLE I 

Convergence Rates for Problem 1 with Error in g at 8 = n/Z 

Mesh size P Error ir, g( x.2) 

3x4 0.060 0.1673 

8x8 0.101 0.1)380 
i6 x 16 0.115 0.0093 

32 x 32 0.120 0.0023 

64x64 0.111 0.0006 
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of the difference equations (18). Since the exact solution is known (Eqs. (8)) we can 
find the error in the numerical results, the errors for g(6) at Q = 7c/2 have been given 
in Table I. It will be noticed that these errors vary as h’ which is as expected since 
the differencing is second order. In fact since central differences were used 
throughout the error dependence on h can be represented as a power series in h* 
and hence one can use the results on different grid sizes to obtain highly accurate 
results using Richardson’s extrapolation. By extrapolating the results at common 
locations from the 16 x 16, 32 x 32, and 64 x 64 meshes we obtain solutions of sixth- 
order accuracy. For example, the results for g(0) at 6 = 0, n/2, and x can be set in a 
Romberg type table as follows: 

;-;;;;;;;;‘g 4.9999830 15 5:000736379 4.999998943 5~oooooooo5 

t:$;;;;:;; 3.999980554 4.00000000 1 
4.000574238 3.999998785 

3.011140293 
;j;;;;;;;; 2.999999406 2.999990320 3.000000012 

Since the exact solutions are 5, 4, and 3 respectively we have 8 decimal place 
accuracy and the average error over all 17 locations is 4.5 x 10P9. Since the full 
multigrid algorithm (FMG) obtains results for various mesh spacings it is natural 
to employ this type of extrapolation to obtain results of high accuracy. Another 
possibility for improving the accuracy is to use r-extrapolation [3]. 

PROBLEM 2. Results were obtained for three mesh sizes 16 x 16, 32 x 32, and 
64 x 64 for seven values of 1 lying in the range 0.01 < 1 d 10 (for the case 2 = 0.01 it 
was necessary to use Newton line iteration to convergence rather than employing a 
single iterate). The values of p are given in Table II and are on average about 0.1 
and in every case less than 0.3. Thus we have a reasonably rapid convergence rate 
in spite of having discontinuous derivatives in the boundary condition at 13 = 0 and 
f3 = 7~. The results are shown graphically in Fig. 2 and are in agreement with those 

TABLE II 

Convergence Rates for Problem 2 for Various Values of ,4 

Mesh size 10 3.162 1 0.3162 0.1 0.03162 0.01 

16x16 0.033 0.039 0.068 0.103 0.150 0.163 0.152 

32x32 0.042 0.046 0.083 0.119 0.177 0.220 0.261 

64x64 0.075 0.076 0.099 0.122 0.184 0.240 0.288 
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FIG. 2. Ice surfaces around a refrigerated pipe. Curves k = 1, 2,..., 7 are for values of the beat transfer 
coeficient 3. = 1O(3-kV2. 

calculated by Meyer [.5]. The extrapolation process described for Problem B can be 
applied to the results from the three grids giving results of high accuracy. However, 
at or near 8 =O or 0 = rr, this high accuracy is impaired because of the discon- 
tinuous derivative in the boundary condition. By considering differences between 
entries in the extrapolation tables (25) the accuracy in the results away from the 
boundary is about 8 decimal places and 4 decimals at the boundary. 

x 

Flc. 3. (i) Anode surfaces for a cathode given by f(x) = cos x. Curves k = 1,2,..., 7 are for values of 
v = 2’k ‘ji2. (ii) Anode surfaces for a cathode given by f(x) = 1, 0 <x < 0.4; f(x) = 3 - 5x, 0.4 < x < 0.6; 
f(x) = 0, 0.6 <x < 1. Curves k = 1, 2 ,._., 7 are for values of v = 2(k-‘)i2. 



460 ROLAND HUNT 

TABLE III 

Convergence Rates for Problem 3 for Various Values of v 

Mesh size 1 1.414 2 2.828 4 5.651 8 

(i) 16x16 0.243 0.219 0.250 0.387 0.441 0.364 0.206 
32 x 32 0.394 0.319 0.381 0.440 0.514 0.412 0.364 
64 x 63 0.492 0.465 0.467 0.534 0.635 0.611 0.537 

(ii) 16 x 16 0.214 0.373 0.556 0.512 0.445 0.207 0.149 
32x32 0.344 0.500 0.645 0.68 1 0.527 0.442 0.373 
64 x 64 0.549 0.545 0.679 0.734 0.604 0.653 0.581 

PROBLEM 3. For this problem the shape of the cathode f(x) needs to be 
specified. Results are obtained for 

(i) f(x)=cos E-Y, O<xd 1 
(ii) f(.u)= 1, Odx<O.4; =3-5x, 0.46x<O.6; =O, 0.6~~6 1; 

representing a continuous function and one with sharp corners (derivatives 
undefined at x= 0.4 and x = 0.6). The results, shown graphically in Figs. 3, have 
been obtained for seven values of v lying in the range 1 d v 6 8 for three mesh sizes 
16 x 16, 32 x 32, and 64 x 64. The results for f(x) = cos XX, v = I are in agreement 
with those obtained by Sloan [S]. The values of p are given in Table III and give a 
much poorer rate of convergence than for Problems 1 and 2 with maximum values 
for p of 0.635 for (i) and 0.734 for (ii) with average values of 0.419 for (i) and 0.494 
for (ii). Thus typically three iterations are required to reduce the error by an order 
of magnitude compared to one iteration in Problems 1 and 2. However since the 
full multigrid algorithm was used, only 12 multigrid iterations at the finest level was 
required to produce an RMS error of order lop6 and 22 iterations for lop9 which 
is acceptable on modern computers. The difficulty probably lies in the problem; 
Sloan using global Newton iteration incorporating continuation found the con- 
vergence rate very slow. The results from the three grids can be extrapolated to 
produce high accuracy results. However, only for case (i) for v = 1, ~5. 2, 2 & 
could be extrapolated results be regarded as reliable and for these values of v the 
accuracy was about 6 decimal places. 

6. CONCLUSIONS 

Using Newton line relaxation it has been demonstrated that elliptic free boun- 
dary problems can be solved successfully using multigrid techniques, the rate of 
convergence being “good” for Problems 1 and 2 (p - 0.1) and “acceptable” for 
Problem 3 (p - 0.5). Since the full multigrid algorithm produces results having grids 
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cf various mesh spacings it is natural to extrapolate the results from these grids to 
produce results of high accuracy. 
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